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Cnoidal wave patterns in quadratic nonlinear media
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We report the existence of whole families of stationary cnoidal, periodic wave patterns in quadratic nonlinear
media. We study the main physical features of the multicolored light patterns, including their shape, contrast,
multifrequency energy sharing, asymptotics in the cascading limit, and excitation. Our numerical simulations
predict that the cnoidal waves with high and even with moderate contrasts are robust enough against modu-
lational instabilities to be experimentally observable.
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During the past years, spatial and temporal solitons s
ported by quadratic nonlinearities, first predicted in t
1970s@1#, have been theoretically investigated and obser
experimentally in several materials and parametric wave
teractions~for summaries of experimental observations a
salient theoretical results, see, e.g., Refs.@2–4#!, and thus
their basic properties are now well established. Bright s
tons are fully localized solutions of the equations govern
the light evolution in the quadratic crystal, and while mo
complex solitary-wave structures~bright-dark, multiple-
peaked, twin-hole, embedded, etc.! solutions of such equa
tions have been found~see, for example, Refs.@4,5#!, only
single bright solitons, which feature a single energy peak
realize the minimum of the system Hamiltonian, have be
found to be dynamically stable. Thus, a crucial open ques
is whether more complex, multipeaked self-sustained li
patterns can be built that are robust enough to be experim
tally observable.

Here we study the process of second-harmonic genera
~SHG! and report the existence of whole families of se
sustained periodical patterns, ormulticolor cnoidal wave pat-
terns, which correspond to doubly periodic mutually trapp
fundamental frequency and second-harmonic beams
pulses. Cnoidal waves have been studied in detail in cu
nonlinear media@6–8#, including Bose-Einstein condensat
with a periodic potential@9#, during the past few years. I
quadratic nonlinear media, only zero-parameter analyt
periodic solutions have been obtained, e.g., with the aid
the Hamiltonian formalism@10#, direct substitution@11#, and
Lie group analysis@12#. General families of cnoidal wave
are reported here, for the first time to our knowledge. T
families of cnoidal waves come with different local and gl
bal shapes, and with varying localization degrees, and
find that multicolored cnoidal patterns existing with a mo
erate or high localization appear to be robust enough to a
their experimental generation and exploration. Here we
port our findings for the cnoidal waves of simplest type
defined by their so-called cn-, dn-, and sn-type asympto
in the cascading~large phase-mismatch! limit, in the case of
one-dimensional light propagation in noncritical two-wa
second-harmonic generation, but the results are relevant
can be extended to more general settings.
1063-651X/2003/67~6!/066612~6!/$20.00 67 0666
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The propagation of slowly varying envelopes of the fu
damental frequency and second-harmonic light beams
pulses in weakly anisotropic quadratic nonlinear media un
conditions for noncritical type-I phase-matching SHG is d
scribed by the system of reduced equations@4,5#

i
]q1

]j
5

d1

2

]2q1

]h2 2q1* q2 exp~2 ibj!,

~1!

i
]q2

]j
5

d2

2

]2q2

]h2 2q1
2 exp~ ibj!.

Here

q15~2k1 /k2!1/2~2pv0
2x~2!r 0

2/c2!A1 ,

q25~2pv0
2x~2!r 0

2/c2!A2

are normalized complex amplitudes of the fundamentalv
5v0) and second-harmonic (v52v0) waves;k15k(v0);
k25k(2v0)'2k1 ; A1,2(h,j) are the slowly varying ampli-
tudes;r 0 is the transverse scale of the input beams or puls
h5x/r 0 is the normalized transverse coordinate;j
5z/(k1r 0

2) is the normalized propagation distance;b
5(2k12k2)k1r 0

2 is the phase-mismatch parameter;d15
21; d252k1 /k2'2 1

2 . We are looking for stationary peri
odic phase-locked solution of Eq.~1! in the formq1,2(j,h)
5w1,2(h)exp(ib1,2j), wherew1,2(h) are real functions, and
b1,2 are real constants which physically correspond to
phase shifts induced by the nonlinear wave interaction. U
der the assumptionb25b12b1 , necessary for the solution
to be stationary and to avoid any power exchange betw
the waves, the resulting system of equations takes the fo

d2w1

dh2 22b1w112w1w250,

~2!

d2w2

dh2 24~b12b1!w214w1
250,
©2003 The American Physical Society12-1
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KARTASHOV, VYSLOUKH, AND TORNER PHYSICAL REVIEW E67, 066612 ~2003!
which, in contrast to the case of fully localized soliton so
tions, will be solved together with periodic boundary con
tions.

It is well known that Eqs.~2! take a simpler form in the
so-called cascading limit, whenubu@1 and the field ampli-
tudes are such that there is a negligible conversion betw
the fundamental wave and second harmonic. Making us
the substitutionw2(h)5w1

2(h)/(b12b1) for the second-
harmonic field in this limit, one arrives at the nonline
Schrödinger equation

d2w1

dh2 22b1w11
2w1

3

~b12b1!
50. ~3!

This equation describes cnoidal waves in Kerr media, an
thus known to admit two periodic cnoidal wave solutions
positive phase mismatchb@1 ~so-calleddn waveand cn
wave! @6#:

w1~h!5~b12b1!1/2dn~h,m!,

m5~222b1!1/2, 1
2 <b1<1,

w1~h!5m~b12b1!1/2cn~h,m!,

m5~b111/2!1/2, 2 1
2 <b1< 1

2 , ~4!

and one solution at negative phase mismatchb!21 ~so-
calledsn wave!,

w1~h!5mub12b1u1/2sn~h,m!,

m5~22b121!1/2, 21<b1<2 1
2 . ~5!

Here dn(h,m), cn(h,m), and sn(h,m) are the elliptic
Jacobi functions, wherem is the modulus of the elliptic func
tion. The periodT of the cn and sn waves amounts
4K(m), while the period of the dn wave is 2K(m). In both
cases,K(m) is the elliptic integral of the first kind. When th
parameterm→0 ~which physically corresponds to weak lo
calization!, the cn and sn waves transform into small amp
tude harmonic waves, where as whenm→1 ~limit of strong
localization! these waves transform into an array of out-o
phase bright and dark solitons, respectively. The dn wav
m→0 transforms into a plane wave, and atm→1 into an
array of in-phase solitons.

Multicolored cnoidal waves with genuine quadratic fe
tures occur for small phase mismatch and at exact ph
matching. To obtain the stationary cnoidal wave profiles
such cases, we solved Eqs.~2! numerically by using a relax
ation method with periodic boundary conditions. In mo
cases, expressions~4! and~5! served as good initial guess fo
the relaxation method, since the difference between the e
solution and the approximate one is small forubu>10. As
ubu→0, amplitudes of the fundamental wave and second
monic become comparable. Numerical integration shows
at ubu;1, profile of the sn wave becomes rather complica
due to the appearance of high-frequency oscillations on
otherwise smooth profile, and the corresponding families
solutions intermix with complex higher-order solution
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Therefore, in this paper we concentrate solely on the dn
cn waves, which are the families more relevant from an
perimental point of view. A comprehensive study of the s
wave families, as well as of the rich sets of existing high
order solutions will be published elsewhere in the futu
Mathematically, for a fixed mismatchb, the cnoidal waves
are defined by two free parameters, namely, the transv
period T, and the nonlinear shiftb1 ~propagation constant!.
Physically, the latter is linked to the energy flowing insid
each transverse wave period. Since one can use scaling t
formations to obtain cnoidal waves with different perio
from a given solution family, from now on we fix the wav
period toT52p and vary the nonlinear shiftb1 ~for differ-
ent material mismatches!.

The main properties of the families of the dn waves a
summarized in Fig. 1. Both componentsw1,2 of this wave
never vanish. Thus, there spectra always contain a dc c
ponent. The dependence of the energy flow per period,

U5E
0

T

@w1
2~h!1w2

2~h!#dh, ~6!

on the propagation constantb1 for the dn wave is shown in
Fig. 1~a!. At positive b, the energy flow monotonically in-
creases with increasing propagation constant. At low eno
negativeb, the energy flow becomes a nonmonotonic fun
tion of b1 . There exists a cutoff on propagation constant
the dn wave that is clearly seen in Fig. 1~a!. At the cutoff, the
dn wave transforms into a plane wave. The dependenc
the cutoff propagation constant on the phase mismatc
shown in Fig. 1~b!. One can see that at negativeb, the cutoff
value of the propagation constant is proportional toubu.
When the energy flow increases, the dn wave transforms
an array of in-phase localized solitons.

A characteristic feature of cnoidal waves is theirdegree of
localization, or contrast, defined as

V1,25
uw1,2umax2uw1,2umin

uw1,2umax1uw1,2umin
. ~7!

This parameter shows how the cnoidal waves link the fu
delocalized solutions~small periodic modulations of plan
waves! and the fully localized light patterns~arrays of high
energy single solitons!. The former limit corresponds to
V1,250, the second toV1,251. The dependence of this pa
rameter on the energy flow and mismatch for the dn wav
shown in Figs. 1~c! and 1~d!. In the case of the dn-waves
increase ofV1,2 from 0 to 1 corresponds to the transform
tion of the dn wave from plane wave~that is modulationally
unstable in quadratic media! into an array of well-localized
in-phase fundamental solitons~which are known to be
stable!. Thus, on physical grounds, the value ofV1,2 is di-
rectly related to the potential stability or instability of th
corresponding light patterns. Intuitively, the closerV1,2 is to
unity, the more dynamically stable the corresponding cnoi
wave is expected to be. Notice that at positiveb, the contrast
of the second-harmonic wave is always higher than tha
the fundamental wave, and thatV1,2 are monotonically in-
creasing functions of the energy flow. Atb523, at weak
2-2
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CNOIDAL WAVE PATTERNS IN QUADRATIC . . . PHYSICAL REVIEW E 67, 066612 ~2003!
localization the contrast can become a two-valued func
of energy flow@this is connected to the nonmonotonic depe
denceU(b1)] and at high localizationV1 can amount to
higher values thanV2 . Dependence of the contrast on pha
mismatch at fixed energy flowU @Fig. 1~d!# shows that there
are cutoff conditions at both positive and negativeb.

Another important parameter is the energy sharing
transverse period between the fundamental and sec
harmonic waves, defined as

FIG. 1. Properties of the dn wave with periodT52p. ~a! En-
ergy flow U as a function of propagation constantb1 for various
phase mismatchesb. ~b! Propagation constant cutoff versus pha
mismatch.~c! Wave contrast as a function of energy flowU for two
values of phase mismatch, and~d!, wave contrast as a function o
phase mismatch atU525. ~e! Energy sharing between the fund
mental wave and second harmonic versus total energy flow for
values of phase mismatch.~f! Amplitude-width diagram atb50.
Rows ~g! and ~h! show typical profiles of the dn wave.
06661
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S1,25
*0

Tw1,2
2 ~h!dh

*0
T@w1

2~h!1w2
2~h!#dh

. ~8!

One can see from Fig. 1~e! that depending on the sign of th
phase mismatch at low energy levels, most part of the w
energy can be concentrated either in the fundamental w
(b.0) or in the second harmonic (b,0). At high energy
flows, most part of the energy is concentrated in the fun
mental wave in both cases. Figure 1~f! shows the amplitude-
width diagrams for the dn wave atb50. The width is de-
fined as the full width at half maximum of the field intensi
(w1,2

2 )max, and has been plotted normalized to the wave
riod T. Notice that because the dn wave is transformed int
plane wave asb1→0, the width can be properly calculate
only above a certain minimal amplitude; however, only a
plitudes well above such values are of physical interest.
exact phase matching, the width is a monotonically decre
ing function of amplitude. Finally, rows~g! and~h! from Fig.
1 illustrate the profiles of the dn waves for various values
the energy flows and phase mismatches. The transforma
of the wave into an array of the in-phase solitons at h
energy flows is clearly visible in the plots.

The salient properties of the cn wave are summarized
Fig. 2. For this wave,w1 periodically changes its sign
whereasw2 never vanishes, and, hence, always contain
constant background. The dependence of the energy flow
propagation constant is shown in Fig. 2~a!. There exists a
cutoff on propagation constant at low energy levels. F
2`,b<1, the cutoff is given byb152b/2. At this point
the fundamental wave vanishes,w1→0, whereas the secon
harmonic transforms into a wave of constant amplitude,w2
→(12b)/2. For b.1, the cutoff always equalsb152 1

2

and both the fundamental wave and second harmonic va
at this point. For positive phase mismatches, the energy fl
is a monotonically increasing function of propagation co
stant, however, at small enough negativeb this dependence
can have a minimum. With increase of energy flow, the c
stant background in second harmonic decreases and th
wave transforms into an array of out-of-phase localiz
bright solitons. This process is clearly seen from the dep
dence of wave contrast on energy flow@Fig. 2~b!#. Notice
that since the fundamental wave periodically changes
sign, one hasV1[1 always, thus we plotted onlyV2 for the
second harmonic. An important point is that for the
waves, the contrast increases slower than that for the
wave when increasingU. The energy sharing between th
fundamental and second-harmonic waves versus energy
is shown in Fig. 2~d!. As in the case of the dn wave at low
energy levels, most part of the energy is carried either by
fundamental wave~at positive mismatch! or by the second
harmonic~at negative mismatch!. Amplitude-width diagram
for the cn wave atb50 is shown in Fig. 2~e!. In the low
amplitude limit, the width of the fundamental wave equa
T/4, whereas the width of the second harmonic is given
T/2. Typical profiles of the cn waves are shown in row
~f! and ~g! of Fig. 2. The transformation of the waves in
arrays of out-of-phase solitons at high localization is clea
apparent.

o
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KARTASHOV, VYSLOUKH, AND TORNER PHYSICAL REVIEW E67, 066612 ~2003!
From the point of view of experimental observation a
potential practical applications, the crucial problem is t
stability and robustness of the cnoidal wave patterns. In
case of cubic nonlinearity, it is known tha
(111)-dimensional dn and cn waves are unstable and o
the sn wave is stable, whereas in (211) dimensions all types
of cnoidal waves are subjected to transverse modulatio
instability @6–8#. However, it is also known that the pertu
bation growth rate decays exponentially when the locali
tion of the waves increases, a property that made possible

FIG. 2. Properties of the cn wave with periodT52p. ~a! En-
ergy flow U as a function of propagation constantb1 for various
phase mismatchesb. ~b! Wave contrast as a function of energy flo
U for various phase mismatches, and~c!, wave contrast as a func
tion of phase mismatch at different energy flows.~d! Energy sharing
between the fundamental wave and second harmonic versus
energy flow for two values of phase mismatch.~e! Amplitude-width
diagram atb50. Rows~f! and ~g! show typical profiles of the cn
wave.
06661
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experimental observation of cnoidal waves in cubic me
@7#. A similar trend is expected for cnoidal waves in qu
dratic media.

First, we present the outcome of selected series of num
cal simulations that show that cnoidal waves with a moder
degree of localization appear to be robust enough to be
perimentally observable. Since for both dn and cn waves,
second harmonic contains a constant background, they
expected to be unstable against modulational instabilit
However, as the energy flow increases, the contrast gro
Thus, the constant background decreases, hence the ins
ity growth rate is expected to decrease. Also, an import
question regarding the experimental observation of the li
patterns is whether they can be excited while embedde
beams with a finite transverse size. To elucidate whet
such is the case, we performed numerical simulations
solving Eqs. ~1! with input conditions q1,2(h,j50)
5@w1,2(h)1r1,2(h)#F(h), wherew1,2(h) describe profiles
of the stationary waves,r1,2(h) is a random variable with a
Gaussian distribution and variances1,2

2 , and the function
F(h) is a broad Gaussian envelope imposed on the ot
wise transversely infinite wave pattern. The width of the e
velope was chosen to be much higher than the cnoidal w
period, and we monitored the dynamics of the wave patt
in the center of the envelope. The propagation of the dn w
with a low contrastV150.41 ~corresponding to the energ
flow U57.5) is shown in Fig. 3~a!. One can see that th
wave pattern is severely affected by the perturbation
self-destroys after a few propagation units, as expec
However, when the energy flow is increased toU525 so that
the localization degree amounts toV150.94, the wave
propagates in a stable way for many propagation units, m
larger than those of existing quadratic crystals@Fig. 3~b!#. A
similar conclusion was obtained for the cn waves. Figu

tal

FIG. 3. Propagation of cnoidal waves in a quadratic medium
the presence of Gaussian noise with variances1,2

2 50.01. dn wave
with U57.5 ~a! and U525 ~b! at b53. cn waves withU52 ~c!
and U550 ~d! at b50. Only the evolution of second-harmoni
wave is shown.
2-4
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3~c! and 3~d! show typical examples. Finally, we notice th
because cn waves correspond to the arrays of out-of-p
peaks, they tend to be more robust than the dn waves, w
neighboring peaks tend to fuse in the presence of the ran
perturbations.

Results of numerical simulations with Gaussian noise
fully supported by direct linear stability analysis of period
cnoidal wave patterns in quadratic medium. Full investig
tion of stability of cnoidal waves are too complex to be p
sented here and will be reported in the separate paper.
we concentrate on one particular case of the dn wave ab
50. According to the usual procedure, we look for the so
tion of the system of equations~1! in the form
of

on

io

x

it
e

ea
n

la

n
t

a
-
lan

06661
se
re
m

e

-
-
re

-

q1,2~h,j!5@w1,2~h!1U1,2~h,j!1 iV1,2~h,j!#exp~ ib1,2j!,
~9!

with w1,2(h) being the stationary solutions of Eq.~1!, and
U1,2 and V1,2 are, respectively, real and imaginary parts
the small perturbation. Assuming thatU1,2(h,j)
5u1,2(h)exp(dj) andV1,2(h,j)5v1,2(h)exp(dj), upon sub-
stitution of expression~9! into Eqs.~1! and linearization we
arrive at the following equation:

dF

dh
5BF, B5S O E

N OD ,
N5S 22~b12w2!/d1 2w1 /d1 22d/d1 0

4w1 /d2 22b2 /d2 0 22d/d2

2d/d1 0 22~b11w2!/d1 2w1 /d1

0 2d/d2 4w1 /d2 22b2 /d2

D , ~10!
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for perturbation vector F(h)5$u1 ,u2 ,v1 ,v2 ,du1 /
dh,du2 /dh,dv1 /dh,dv2 /dh%T, where O and E are zero
and unity 434 matrices, respectively. General solution
Eqs. ~10! can be expressed in the formF(h)
5J(h,h8)F(h8), whereJ(h,h8) is the 838 Cauchy ma-
trix. In turn, Cauchy matrix defines the matrix of translati
of perturbation eigenvectorF on one wave periodP(h)
5J(h1T,h). It was rigorously proved in Ref.@7# for the
case of cnoidal waves in cubic medium that perturbat
eigenvector would be finite along transverseh axis only in
the case when the corresponding eigenvalue of the matri
translation satisfies conditionulku51 (k51,...,8), which
gives a receipt of construction of areas of existence of fin
perturbations. In contradistinction with the case of localiz
solitons ~where spectrum of perturbations is discrete! for
cnoidal waves, one has a band of possible increments at
energy flow. The areas of existence of finite perturbatio
with real increments are shown in Fig. 4 for the particu
case of the dn wave atb50. In this case, only two of the
eight eigenvaluesl1,2 of translation matrix have to be take
into account. One can see that such areas shrink with

FIG. 4. Areas of existence of finite perturbations with re
growth rates for the dn wave atb50. Dashed lines in figures cor
respond to the point where the dn wave transforms into a p
wave.
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increase of propagation constantb1 ~energy flow or contrast!,
so maximal possible increment decreases. Besides pertu
tions with real increments, perturbations with complex inc
ments are possible~which is the case for the cn waves!,
however real parts of such increments are usually very sm
and also found to decrease rapidly with the increase of
ergy flow. This is in full agreement with the results of n
merical simulations of propagation of cnoidal waves in t
presence of Gaussian noise.

With regard to the experimental formation of cnoid
waves, we would like to mention that one can use for th
excitation arrays of Gaussian beams, or interference patt
produced by intersecting planar wave. Moreover, under
propriate conditions these waves can be formed upon
development of modulational instability of plane waves
quadratic media@13#.

In conclusion, we have reported the existence and m
properties of several types of lowest-order families of cn
dal waves patterns existing in quadratic nonlinear med
Whole families have been shown to exist for all values of
mismatch. The numerical simulations suggest that multic
ored cnoidal wave patterns reported here appear to be ro
enough to be experimentally observable~that feature a mod-
erate or a high localization degree!. Such patterns of peri-
odic, pixel-like structures might find applications in the fu
damental study of complex multicolor light pattern
generated by modulational instabilities, and in the practi
implementation of optical switching and digital image pr
cessing schemes with periodic light patterns, as those d
onstrated experimentally recently in quadratic@14,15# and
photorefractive@16# materials.
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